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VISCOSITY METHODS FOR PIECEWISE SMOOTH SOLUTIONS 
TO SCALAR CONSERVATION LAWS 

TAO TANG AND ZHEN-HUAN TENG 

ABSTRACT. It is proved that for scalar conservation laws, if the flux func- 
tion is strictly convex, and if the entropy solution is piecewise smooth with 
finitely many discontinuities (which includes initial central rarefaction waves, 
initial shocks, possible spontaneous formation of shocks in a future time and 
interactions of all these patterns), then the error of viscosity solution to the 
inviscid solution is bounded by O(EI logE + e) in the L1-norm, which is an 
improvement of the O(H/-) upper bound. If neither central rarefaction waves 
nor spontaneous shocks occur, the error bound is improved to 0(e). 

0. INTRODUCTION 

Consider the single hyperbolic conservation laws 

(0.1) Ut + f(u)x = 0, -oo < x < oo, t > 0, 

subject to the initial condition 

(0.2) u(x, 0) = uo(x), -oo < x < oo. 

The viscosity method approximating the conservation laws (0.1) and (0.2) is to 
solve the parabolic equation 

(0.3) (VE)t + f(v,)x = 6(V')XX, 

subject to the same initial condition 

(0.4) vE (x, 0) = uo (x). 

Here, c > 0 is a small parameter. Viscosity methods play an important role in 
theoretical analysis on numerical methods for hyperbolic conservation laws. A 
useful technique for studying the behavior of solutions to difference equations is to 
model the difference equation by a differential equation called modified equation, 
see for example Chapter 11 of LeVeque's book [13]. The difference equation was 
introduced because it is easier to solve numerically than the partial differential 
equation (PDE). This is true if we want to generate numerical approximations, but 
on the other hand it is often easier to predict qualitative behavior of a PDE than 
of a system of difference equations. Since many modified equations have similar 
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forms to equation (0.3) (more precise form is equation (6.1), see Section 6 for more 
discussions), a better understanding of the solution behavior of (0.3) will help us 
to understand many difference methods for (0.1). For existence and regularity 
properties for (0.3), we refer to [9, 16]. 

In this work, we are concerned with the accuracy of the viscosity methods. More 
precisely, we will investigate the L1-convergence rate of u - v,. It is well known that 
the L1-norm of error decays only like O(VfE) if the initial data is piecewise smooth. 
Consider an advection diffusion equation of the form 

Vt + avx = EVxx , a = constant, 

with uo(x) = -sign(x). Its exact solution is 

4 r(x-at) / ; e- 
2 

vE(x,t) =- 46e-dy. 

From this and the fact that the solution to the pure advection problem is u(x, t) 
-sign(x - at), it can be shown that 

||U(e,t) 
- 

VE(e,t) II L1(R) = C "t 

for some constant C independent of c and t. This indicates that the L1-convergence 
rate of the viscosity methods is only one half for this simple linear problem. In 
practice, solutions of monotone difference methods agree very well with the true 
solutions of related modified equations. It is expected that monotone difference 
methods will have similar convergence rate to that of viscosity methods. Harten, 
Hyman and Lax [7] pointed out that monotone difference methods are of at most 
first-order accuracy and Kuznetsov [10] provided an one half order L1-convergence 
rate for BV bounded initial data. Tang and Teng [19] recently proved that the 
best L1-convergence rate for monotone difference methods to scalar conservation 
laws is one half if it includes the linear flux case. All these indicate that viscosity 
methods and monotone difference methods share some common properties on the 
L1-convergence rate. 

Although it is proved that half order convergence rate is best possible for both 
viscosity methods and monotone difference methods, it is widely believed that these 
methods may have higher order of convergence rate when applying to convex con- 
servation laws. More precisely, if the flux f is strictly convex, 

(0.5) f" > a > O, 

then higher order (greater than one half) convergence rate is expected, see Harten 
[6]. Lucier [14] used one of the monotone schemes, Godunov's method, to solve 
Riemann problems for (0.1) with a convex flux. He observed an order one conver- 
gence rate. Teng and Zhang [20] recently proved that for a special class of initial 
data, namely piecewise decreasing constants, both viscosity and strictly monotone 
difference methods have order one L1-convergence rate, provided that the flux f 
is strictly convex. Likewise, Bakhvalov [1] and Harabetian [5] proved a faster con- 
vergence rate O (c ln cj) for Riemann problems with a rarefaction wave. Teng and 
Zhang's work used the existence of traveling waves obtained by Jennings [8]. It 
is noted that Jennings' results do not cover Godunov's method since his proof re- 
lies heavily on the strict monotonicity of the schemes and differentiability of the 
flux function. In a recent work of Fan [3], the existence and structure of traveling 
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waves for Godunov's method are investigated. The order one L1-convergence rate 
is established for Godunov's method on single shock solutions. 

In this paper, we also consider (0.1) with a strictly convex flux, but with a more 
general and practical class of initial data. With this class of initial data, the entropy 
solution to (0.1) may include initial central rarefaction waves, initial shocks, possi- 
ble spontaneous formation of shocks in a future time and interactions of all these 
patterns. We will establish 0(cE ln el) L1-convergence rate for the piecewise smooth 
solutions with finitely many discontinuities. To the best of our knowledge, no global 
error estimates for piecewise smooth solutions have been obtained, although some 
results for Riemann problems [1, 3, 5], for piecewise constant solutions [20], and 
for BV bounded initial data [14, 10] are available. For piecewise smooth solutions 
to hyperbolic systems with finitely many noninteracting shocks, 0(c) local error 
estimates have been obtained by Goodman and Xin [4]. 

The remainder of the paper consists of six sections. In Section 1, we investigate 
the structures of the solution to (0.1) with a class of piecewise smooth initial data. 
Some useful estimates for first order and second order derivatives of the solution 
are obtained. In Section 2, we introduce a traveling wave solution and a stability 
lemma, which play important roles in obtaining the L1-convergence rate. Using the 
stability lemma, we prove in Section 3 the following estimate: 

sup |Iu(, t) -VE(e t)IILl(R) <?(T) (6C log l + ) I 
O<t<T 

provided that uo is piecewise smooth and that f'(uo) has a finite number of inflec- 
tion points. In our proof, we will use a matching method developed by Goodman 
and Xin [4] and Liu and Xin [12]. In Section 4, we make some remarks on optimal 
error estimates. It is shown that if neither initial central rarefaction waves nor 
spontaneous shocks occur, then 

sup |Iu(, t) -Ve(e, t)11L(R) < C(T)c. 
O<t<T 

In Section 5, we derive sharp estimates for viscosity methods with a special class 
of initial function, which includes the initial data considered in Teng and Zhang 
[20]. Loosely speaking, we consider a nonincreasing piecewise smooth solution with 
finitely many shock interactions. In this case, we obtain the following estimate: 

sup IIu(-,t) - VE(,t)ILl(R) < CC, 
O<t< 00 

for some c independent of c. Some possible generalizations will be discussed in the 
final section. 

1. SOLUTION STRUCTURES 

Throughout this paper, the norm 11 11 denotes the standard L1-norm, 11 |IL1(R); 
C denotes a positive constant independent of c; c denotes a positive constant inde- 
pendent of t and c, but with different values at different places. 

Let a(u) = f'(u). If x = x* is an inflection point of a(uo(x)) and also satisfies 
&(uo(x*)) < 0, then we call x* a decreasing inflection point. If this inflection point 
satisfies &(uo(x*)) > 0, we call it an increasing inflection point. Throughout this 
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paper, we use the following notations: 

(uo(x)) du a(uO(x)); d(uo(x)) dx2 a(uo(x)) 

duo (X).. d2Uo (X) 
uo (X) := dx ; uo(x) dx2 

The behavior and structure of entropy solutions for scalar convex conservation 
laws have been studied for many years, see for example [2, 11, 15, 17]. It is well 
known that if the initial function is piecewise C2-smooth, then the entropy solutions 
consist of at most a countable number of C2-smooth regions. Tadmor and Tassa 
[18] proved that if the initial speed has a finite number of decreasing inflection 
points, then it bounds the number of future shock discontinuities. 

We make the following assumptions on the initial data: 
* (Al): uo(x) is bounded and piecewise C2-smooth with a finite number of 

discontinuous points -yi, 1 < i < I; uo (-yi ? 0) and ito (-yi ? 0) exist and are 
finite; 

* (A2): io EL(R); 
* (A3): 

lim &(uo (x)) = 0; 

* (A4): 6,(uo(x)) changes signs a finite number of times, i.e. a(uo(x)) has a 
finite number of inflection points. 

Remark 1.1. In order to obtain an estimate for uxx (Lemma 1.3), we have to assume 
that uo is piecewise C2. The only place to use this assumption is to obtain the 
estimate (1.30). Otherwise, a weak assumption on uo, i.e. uo is piecewise Cl, will 
be sufficient. Furthermore, the existence of iio(-yi ? 0) is not required. That is, 
uio(yi 0 ) can be infinity. D 

We now introduce following notations: 
* Denote the set of points where &(uo) has a negative minimum by (p, 1 < p < 

P. Without loss of generality, we assume that b,(uo((p)) are distinct: 

b,(U0((1)) < b,(UO((2)) < ... < b,(uo ((P)) - 

It is straightforward to extend our results to the case when there are some 
(p, (q,p 7& q, such that &(uo((p)) = &(Uo((q)). 

* Denote to =0 and tp = -1/(uo((p)),p = 1, ,P. For a fixed T > tp, we 
let tp+1 = T. 

Remark 1.2. A negative minimum point may form a shock at a future time. How- 
ever, by no means will every negative minimal point eventually generate a new 
shock. It is an easier case if the negative minimal point does not lead to a shock. 
Without loss of generality, we assume that each point in the set {f(} corresponds 
to a new shock created at a later time. The starting point of the new shock is 
(xp, tp). E 

Since uo is assumed to be only piecewise C2, it may be discontinuous and there- 
fore will not have a classical derivative. We refer by &(uo) to the generalized de- 
rivative of a(uo). In the smooth interval (yi, -yi+), &(uo) is the classical derivative. 
In positive and negative jump points of uo, &(uo) is positive and negative infinity, 
respectively. In particular, in negative jump points (i.e. decreasing discontinuities) 
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of uo, &(uo) has a negative (infinite) minimum. If &(uo) has a continuum of negative 
minimal points it is considered as one minimum. 

The assumption (A4) indicates that &(uo) has a finite number of decreasing 
inflection points. It can be shown that under the assumptions (Al), (A3) and (A4) 
only a finite number of shocks will occur (see, e.g. [17, 18]). The corresponding 
entropy solution consists of a finite number of C2-smooth pieces. The shocks are 
disjoint, except for common endpoints arising from collisions, and (without loss of 
generality) we assume that no more than two shocks ever collide. More precisely, 
for each time interval [tp, tP+I] there exist a finite number of subintervals, t(p n) < 

t < t(P,n+),n = 0,1,*. , Np - 1, where t(A0) = t(p,(Np) = tP+JJ such that 
in each interval [t(Pn) It(Pn+l)) there are a finite number of smooth curves x = 

x.') (t), m 1, , Mp,n, satisfying 

1. For t E (t(P,n), t(P,n+l)), 

X(p, n) (t) < x (p +nl) (t), v , , pn1 

2. there exists at least one m such that 

X(p,n)(t(p,n+1)) = X(p,n) (t(p,n+1)); 

3. u(x, t) is smooth except on x =X('m(t) v <t <t(P?n+l); 

4. u(X(') M 0, t) exist and satisfy either u(X('m )-0, t) > u(X('n) + 0, t), i.e. 
A m )is a shock, or (X(')- 0, t) = u + 0, t), i.e. m is a contact 
discontinuity. Moreover, for t E (t(P,n), t(P,n+l)), 

f (U(X(P,n)+o,t))-f (U(X(pn)_-O,t)) 

| u(X(p,n)+O t)_u(X(p,n)_O t) 

if u(X(p'n) + 0, t) > U(X(pn) t), 

iUXpn)+ O, t) = U(Xp,n) Ol)- 

where X(t) = dX(t)/dt; 
5. Each shock X(p'n) (t) continues to the next subinterval [t(P,n+l), t(P,n+2)), with 

a possibility that it collides with another wave at t = t(p,n+l). Consequently, 
each shock curve can be extended to t = 0o. 

From the above results it follows that the solution of (0.1) and (0.2) is a finite 
combination of the cases plotted in Figure 1. To proceed, we need more information 
on shock and rarefaction discontinuities. Shocks will be formed in the following 
cases: 

* (i) if there is an initial negative jump; 
* (ii) if &(uo) has a negative minimum in an interval where uo is c2 smooth; 
* (iii) if uo has positive jump at a point, x = z say, and &(uo(z+)) or &(uo(z-)) 

is a negative minimum. 

A shock may also occur as a consequence of an interaction of two waves. If 
X = Xm(t) and x = Xm+i(t) are interacted with each other, then we denote the 
resulting shock still as x = Xm (t). It is regarded as an extension of x = Xm (t) or 
X = Xm+i(t), rather than a new shock. 

Consider first two cases. Assume x = X(t) is a shock curve. Before x = X(t) is 
interacted by other waves, say tp < t < t(p,n) we can trace two characteristic lines 
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FIGURE 1. Solution structures 

from x = X(t) backward to t = 0: 

(1.1) X(t) = (- + a(uo((-))t = (+ + a(uo((+))t, 

where (+(t) > (-(t). Differentiating both sides of the first identity in (1.1) with 
respect to t gives 

(1.2) X(t) - a(u(()) d-(t) 
1 + b&(uo((y))t dt 

or equivalently 

(1.3) 1 _ _ 
1 + &(uo((-))t X(t)-a(uo((-)) 

Observe that 

(1.4) X(t)-a(uo((-)) j a(Ou+ + (1 - O)u-)dO - a(u-) 

f f"(Q)OdO(u+ - 11, 
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where u -u(X(t) ? 0, t), ( denotes some intermediate value. Therefore, we have 

[X(t) - a(uo((-))I > clu+-u- > cla(u+) - a(u-) = t - - 
t 

where c is some constant independent of t, and in the last step we have used (1.1). 
The above results lead to 

1 < ctl(- I 
1 l+(uo ((-))t- 1+ -(-I 

Graphically, it is easy to see that (- is a decreasing function of t and (+ is an 
increasing function of t. Therefore, we have Q = -- < - Q. It is also true 
that (+ > (-. Therefore, we have 

1 < ct(_+ - 

1 + b(U0((-))t- (+- (_ 

A similar result holds for (+. Consequently, we conclude for both Cases (i) and (ii) 
that 

(1.5) 
1 < ct((+ - 

where c is a constant independent of t, and the inequality holds before x = X(t) 
collides with another shock. 

Remark 1.3. The inequality (1.5) is an important result. Assume that x = X(t) is 
not interacted by other waves for t E (S, T). It follows from (1.5) that 

(1.6) fT 1 + (uo((?))tdt 

< C(T) ( log((+ (T) - (T)) + log((+ (S) - 0(S))). 

For a finite T, we have 

C+ (S)-- -(S) < C+ (T) - 0(T) < C. 

To bound the right-hand side of (1.6), we only need to find the lower bound for 
+(S)-(- (S). See, for example, step 1 in the proof of Lemma 1.1. I 

In Case (iii), a new shock is generated on the boundary of a central rarefaction 
wave. Since one side of the resulting shock is within the rarefaction wave, one 
of the two characteristic lines from any point on the shock will end up at the 
positive jump point. Consider, for example, uo has positive jump at x = z and 
&(uo(z-)) is a negative minimum in the sense that &(uo(z-)) < &(uo(x)) for x 
in the left neighborhood of z. There we will have a central rarefaction wave with 
boundaries x = XL(t) and x = XR(t). Starting at the point (XL(tz),tz), where 
tz = -1/&(uo(z-)), a new shock x = X(t) will be generated. It satisfies 

(1.7) X(t) 0 + a(uo((-))t. 

Now (1.3) holds, with 

X(t) = a(Ou+ + (1 - O)u-)dO, 
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where u+ = a-1((X(t) - z)/t),u- = u(X(t) - O,t). It follows from (1.4) and (1.7) 
that 

|X(t) - a(uo((-))J > c|u+ -u- > c|a(u+)-a(u-) 

- tlJ(X(t) - z) - a(uo((-))t| = t - z- . 
t t 

Therefore, we have 

1 ct0- 

(1.8) 1?( + (o((-))t - Z- -Z 

Similarly, if uo has positive jump at x = z and &(uo(z+)) is a negative minimum, 
we have 

(1.9) ?I+(uo((+))t - -Z 

Remark 1.4. Similar to Remark 1.3, it follows from (1.8) that 

(1 .o) T 1 dt Is 1+&(uo(( ))t 

< C(T) ( log((- (T) - z) + log( (S) - z) ). 
Therefore, it is important to find a bound for (- (S) - z. See, for example, step 1 
in the proof of Lemma 1.1. A similar idea will be used to treat (1.9). 0 

From the above discussion, we can obtain the following lemma which is important 
in the error analysis. 

Lemma 1.1. Assume x = X(t) is a shock curve satisfying 

(1.11) X(t) - f( U) f( -) U? =u(X(t) 4 0, t). 
U+- U- 

Assume a(uo) is sufficiently smooth in the neighborhood of its negative minimum 
points. If x = X(t) is formed at t = 0, then 

(1.12) j uX(X(t) O,t) dt < C. 

If x = X(t) is formed at t = tp > 0, then 

(1.13) X |X(X(t) ? ,t) dt <Cl logbl +C, 
t+6 

provided that 6 > 0 is sufficiently small. Here T > tp is a fixed number. 

Proof. The proof of this lemma consists of three steps. 
Step 1: Initial negative jump. In this case, a shock is formed due to initial 

negative jump at a point, say x = b. It is obvious that this shock is not going to be 
interacted by other waves before a finite time t(? n), 1 < n < No. It is known that 

u ((? + a(uo(())t, t) = Uo(() 0 < t < t(? n). 

Differentiating both sides with resepect to (+ or (- gives 

(1.14) ux (X(t) Ol,t) = 1 to(M W 1 ? &(uo((?)) 
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Since &(uo (x?O)) is bounded by a constant independent of x, there exists a constant 
71 such that Iux (X (t) i 0, t) I < c for all 0 < t < rq. If this shock collides with another 
wave at t = t(? '), we choose a positive ay satisfying ay < min(r7, t(0'n)). Obviously, 

(1.15) lux(X(t) ?0,t)Idt < c. 
Again, since (- is decreasing and (+ is increasing, we have 

(+ (t)-- -(t) > (+ (Qy) - (-y) = constant > 0, for t C(y, t(? n)). 

Using Remark 1.3 and the above inequality, we can obtain that 

t (?,n) 

(1.16) lux(X(t) ? 0,t) dt < C. 

At t = t(',n), if the shock is interacted by another shock, then the resulting shock 
satisfies 

( (t)-- (t) > (+ (y) - ((y) = constant > 0, for t C (t(?n),t(?n') 

where t(0n') C (t(0'n), tl) is the next (possible) shock interaction time. Again, using 
Remark 1.3 and the above inequality gives 

t(O,n') 

(1.17) 1 lux(X(t) ? 0,t)ldt < c. 
t(? ,n) 

At t = t(0,n), if the shock is interacted by a central rarefaction wave, u(x, t) = 

a-'((x - z)/t), at t - t(0,n), say on the left boundary as in Figure 1(G), then we 
have 

z (-(t) > z - (t(?,n) > z -(-y) = constant > 0, for t C (t(On),t(On')). 

Using Remark 1.4 and the fact that 

lux(X(t) + O, t) I < C/t for t (t(On), t(n')) 

gives the same estimate as (1.17). Repeating this procedure a finite number of 
times, we can obtain (1.12). 

Step 2: Negative minimum point in a smooth domain. Assume that (p C 

(Z1, Z2) is a negative minimum point of &(uo), and a(uo) is sufficiently smooth 
in (ZI, Z2). Then there is a shock curve, x = X(t), formed at (xp, tp), where 
xp = (p + a(uo((p))tp with tp = -1/&a(uo((p)). From each point away from the 
curve, we can trace a characteristic line backward in time to t = 0. Using Lax' geo- 
metric condition, we know that these lines will not end up with the discontinuous 
points. Let x = ( + a(uo(())t denote a characteristic line passing through an (x, t) 
point. We point out that ( is a function of x and t. For a fixed time t, it is easy to 
see that a larger value of x corresponds to a larger value of (. This gives 

(1.18) Ox = 1 + &(uo(())t > 0, t(uo(()) := a (a(uo(()- 

See also Dafermos [2] for a similar result. Notice that (p is a negative minimum 
point of &(uo(()). This suggests that there exists a positive integer s such that 
a(k)(Uo((p)) = 0,2 < k < 2s, and a(2s+l)(uo((p)) > 0, where 

a(k) (uo(X)) dxk a(uo(x)). 
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Moreover, there exists a constant -y > 0 such that 

(1.19) 

0 < a(2s+l) (uo(4)) < 2a(2s+1)(u(Q)), for ( - (p < -Y 

FIrom (1.18) and Taylor's expansion, we obtain 

1 + ?(uo((P))t + a1 ) a(2s)(uo(( P _)2Sj >0, 

where ( is between ( and (p. Using the fact that &(uo(Qp)) = -l/tp, we obtain that 

t 1 2+)U()( (P2st> (1.20) 1 -+ ()a (u0(())((_- )St>0. 

If 1( - p < -y, we obtain from (1.19) and (1.20) that 

K - (Pi > C(t -tp) 2s tp<t< (') 

where t(pn) < tp+1 is the smallest time level when x = X(t) collides with other 
waves (t(P,n) = tp+ if this does not happen). Therefore, we have proved that for 
all ( near (p, 

(1.21) 1(- (p > min {y, C(t-tp)}2s t 

Tracing two characteristic lines from x = X(t) backward to t = 0, see (1.1), we 
obtain from (1.21) 

(1.22) (+(t)-- (t) min {y, C(t - tp) }, tp <t K 

From (1.14), (1.22) and Remark 1.3, we obtain 

t(P,-) 

lux(X(t) ? 0,t) dt < Cl log8l + C, 
b+t p 

where 8 > 0 is sufficiently small. By using the same argument as used in step 1 of 
this proof, we can extend the above integration to the time interval (tp + 6, T). 

Step 3: Negative minimum point at a positive jump endpoint. Without loss of 
generality, we assume that u0 has a positive jump at x = z, and &(uo(z-)) is a 
negative minimum. Let XL (t) be the left boundary of the central rarefaction wave 
and tp = -1/&(uo(z-)). Then a shock x = X(t) is formed at the point (xp,tp), 
where xp = XL (tp). Assuming that a(uo(()) is sufficiently smooth as z ) - 0 
and using Taylor's expansion, we have 

z -(- (t) > min -y, C(t -t p) 21s} 

where s is a positive constant. This, together with Remark 1.4, yield that 

t(O,n) 

lux (X(t) - 0 t) |dt < C| log 61 + C, 
b+tp 

where t(? n) indicates the smallest time level when the shock collides with another 
wave. It is clear that u(x,t) = (f')-1((x - z)/t) for x -* X(t) + 0 and hence 
ulu(X(t) + 0, t) I < C/t. We can then conclude that (1.13) is true for this case. 0 
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Remark 1.5. It is observed from the proof that if the discontinuities are purely 
due to the initial negative jump, then the O( log 8 ) factor is not included in the 
estimate for the integral of ux, see (1.12). The optimal error estimate seems possible 
in the case when the solution u contains neither a central rarefaction wave nor an 
original shock generated at a later time. This will be investigated in Section 4. C 

Remark 1.6. Assume x = X(t) is a shock curve generated at t = 0 or t = tp and 
x = (i + a(uo((?))t are the corresponding characteristic lines. We have proved in 
the above lemma that 

(1.23) 1 + &(uo((?))tdt < Cl log6l +c. 

The partial derivative ux will also be discontinuous at a point z if there is an 
initial positive jump at z, i.e. uo(z + 0) > uo(z - 0). This corresponds to a 
central rarefaction wave. The case that the rarefaction wave collides with a shock 
is included in Step 1 of the proof for Lemma 1.1. Here we are interested in the 
central rarefaction wave before it is interacted by a shock. 

Lemma 1.2. Assume a central rarefaction wave is formed at x = z. Let x = XL (t) 
and x = XR(t) be left and right boundaries of the rarefaction wave, respectively. If 
(uo (z + 0)) is not a negative minimum, then 

IuX(XR (t) + O,t)I <?, IUx (XR(t) -O,t)I < Ct1. 

The above results hold before the rarefaction wave is interacted by a shock. If 
(uo (z + 0)) is a negative minimum, then 

tux (XR(t) + 0, t)| < C(t - tp) 1, Ux (XR(t) - O,t)I < Ct-1, 

for t < tp , where tp -1/(4uo(z + 0)). The curve X = XR(t) will become a shock 
after t = tp . Similar results, based on &(uo(z - 0)), hold for XL(t). 

Proof. Observe that 

u(X,t) = (f )- 
I 

t )' XL (t) < X < XR (t)v 

where XL(t) =Z + f'(Uo(z - 0))t, XR(t) = z + f'(uo(z + 0))t. The above result 
gives that 

tux(XR(t) - O,t)I < Ct1I 

Moreover, if a(uo(z+0)) > 0 or a(uo(z+0)) < 0 but not a local minimum, then we 
can show that Ux(XR(t) + 0, t) < C before x = XR(t) collides with other waves. 
Now consider the case that & (uo (z + 0)) < 0 is a local minimum. Then a new shock 
will be formed at tp = -1/(uo(z + 0)). Similar to (1.14) we have 

ux (XR(t) + Oi t) = 1+a(o (z + O))t O < t < tp. 

This and the fact that tp =-1/a(uo(z + 0)) yield 

T rxi(XRm(t) + ODt)I < C(tp-t) O <t <tp 

The proof is complete. F] 
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Remark 1.7. Let x = XR(t) be the right boundary of a central rarefaction wave. It 
may collide with a shock at a certain time, say t = t*. We still denote the resulting 
shock as XR(t). Hence, we have extended the curve x = XR(t) to the whole time 
interval [0, T]. Using Lemmas 1.1 and 1.2 gives 

rt +i-6 

(1.24) 1 Ux(XR(t) ? 0, t) dt < Cl log 61 + C. 
t+6 

Moreover, from each point on x = XR(t) we can trace a right characteristic line 
x = (+ + a(uo((+))t back to t = 0. Here (+ = z + 0 before XR(t) is interacted by 
a shock. From the proofs for Lemmas 1.1 and 1.2, we can show that 

rtp+l -E 1 
(1.25) j 1 dt < Cl log 1 +?C. 

We may extend x = XL (t) in a similar way and trace a left characteristic line 
x = (- + a(uo((-))t back to t = 0. Here, = z - 0 before x = XL(t) collides 
with a shock. We also have 

rtp l-6 

(1.26) U ((XL(t) i 0, t) (dt < Cl log6l + C, 
t+6 

rtP+1 -61 
(1.27) 1 -dt < Cl log86 + C. 114? 1?+&4uO(Q-))t 

In order to provide a sharp Ll-error bound, some properties on second-order 
derivatives are also needed, e.g. see Sections 3.2 and 3.3. 

Lemma 1.3. Assume that uo satisfies the assumptions (A1)-(A4) and let a(uo) be 
sufficiently smooth near its negative minimum points. Then the solution to (0.1) 
and (0.2) satisfies 

tp+l-6 

(1.28) ] IuXX(.,t)Hldt < C| log86 + C, 0 < p < P, 
tP+6 

provided 6 is sufficiently small. 

Proof. For any fixed time t E (tP,tP+1), there are finite intervals (Zj(t),Z1+?(t)) 
(the number of the intervals can be bounded by a constant independent of t) such 
that the transformation x = ( + a(uo(())t maps (Z1(t), Z?+I(t)) (in x space) to 
(O1 (t), I+ (t)) (in ( space). The solution u(x, t) is continuously differentiable in 
(Z1, Zl+1) but not at the end points Zi (t) and Z1+1 (t). It is observed that 

min Z1 (t) = min 01 =-oo, and max Z1 (t) = max 01 = oo. 

In the case that Z1(t) and Zl+(t) are boundaries of a central rarefaction wave, 
there exists an integer s such that O, (t) = O,+i (t) = z, and the solution is of the 
form 

u(x,t) = (f')-1 (x-zs , Zl(t) < x < Z1+1(t), 

where Zl+l(t) - Zj(t) < [f'(uo(zs+)) - f'(uo(zs-))]t. It follows from f" > ag > 0 
that [(f')-]"(<) < C for I(I < C. Hence, we have 

jZt+ (t) Zu)+( ? (t) dx 
I UXX (x t) |dx < C X 2= C (Z1+1 (t)-_Zl (t) t-2 < Ct-11 

Zl (t) Zl (t) 
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which leads to 
rtp+1 RZ+1 (t) 

f l IuXX (x, t) ldxdt < Cl log 61 + C. 
tP+6 JI (t) 

If 01 < 01+1, we have 1+&(uo(())t > 0 for ( C (0', 01+?). Differentiating the equation 

u(( + a(uo(())t, t) = u0(() with respect to ( gives 

UZ (( + a(uo(())t- t)(1 + &(uo)t) =( 0+(u()t + iio 
(1 ? (uo)t)2 1 ? &t(uo)t- 

It follows from the above result that 
IZ +Z 1(t) r01+1(t) 

l UXX(x,t)jdx = uxx((+a(uo(())t,t)(l +?(uo)t)ld( 
J Z1 (t) 0o1 (t) 

Att 11 ? (b)t2 A(t z (uO)td 

=:II + I2 - 

Observe that 
aK 1_ _ _ a(uo)t 

1 + a(uo)t= (1 + &(uo)t)2 

This suggests that the maximum of 1/(1 + &(uo)t) possibly occurs at (i) increasing 
inflection points of a(uo); (ii) decreasing inflection points of a(uo); and (iii) the end 
points O,(t) or 1+,1(t). For the possibility (i), we have 1/(1 + &(uo)t) < 1. For the 
possibility (ii), noting that 1 + &(uo)t > 0, we have 

1 1 
1 + .(o)t >< max 3 

Since t c (tp, tP+i), we obtain from the above result that 

1 < C 
1 + &(uo)t-tP+ -t 

Consequently, we obtain for the above three possibilities that 

(1.29) 
1 

1 + 
C 1 1 

1 + &(uo)t 1 t? +- t l + 1 (uo(0,))t ? + ?t(uo(0,+i))t 

Notice that there is no new shock being generated for t c (tp, tP+1). If x = Zi (t) 
corresponds to a shock curve, then Oi (t) = (+(t) following our notation in Lemma 
1.1. Then using Remark 1.6 we have 

rtp+l 1 

I p+ (U1 + &(U0(0,))tdt < Cl log8l + C. 
If x = Z1 (t) is a right boundary of a rarefaction wave and collides with a shock at 
t = t* C (tpv,tp+), then using Remark 1.7 gives 

rtP+1-6 1 

1 +a(uo(0())tdt < Cl log86 + C. 

Similar results hold for the last term in (1.29). These, together with the assumption 

(A2), yield 
Itp+-6 

tI2tdt < Cl log86 +0. 
tp + 
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Observe that 
b a((u)t d; _ 1 _ 1 

]c (l + &(uo)t)2 1 + &(uo(c))t 1 + &(uo(b))t' 

provided that a(u0) C2 (b, c). It follows from (A3), (A4) and the above identity 
that 

(1.30) fOd+i(t) d(uO)t d 
10() (1 ? &(uo)t)2 

1 1 2 
< 

1 + & (uo(0i(t)))t 1+ a(uo(Oi+i(t)))t + 1 + &(uo(yj))t' 

where yj C (0j, Oj+1) are inflection points of a(uo). Similar to the discussion for I2, 

we have 
Itp+1-8 - O+1 (t) II(ud dO) It 

101(t) (1?+&(uo)t)2s ~o8 0 

Using (Al) and (A2), we can show that ito is bounded almost everywhere. This 
and the above inequality yield that 

otp+l-6 

I [I1 dt < Cl log 61 + C. 
Jtp +E 

The proof of Lemma 1.3 is thereby complete. C 

2. STABILITY AND TRAVELING WAVE 

Our error estimates are based on a stability lemma for nonhomogeneous viscous 
equations and a traveling wave lemma. We first introduce the stability lemma. 

Lemma 2.1. Let v(i) (x, t), i - 1, 2, be continuous and piecewise smooth solutions 
of the following equations: 

(2.1) 

v(i) + (f(v()) -6 (v(i)) - gi(x,t), t > a, i = 1,2. 

The above equation holds for all values of x except on some curves Xm (t), 1 < m < 

M, where v(i) may not exist. If w := v(1)-v(2) -O0 as x -oo, then 
t 

(2.2) 11w(, t) 11 < ||w(, a) 11?+ lgl(,T) - g2(, T)|dT 

M t 

+E S I wx (Xm (T) + 0, T) - Wx (Xm (T)- 0, T) dT. 

m=1 

Proof. It follows from (2.1) that 

(2.3) Wt + (f '(()W)x - Wxx = g1 (x, t)-92 (X- t), 

where ( is some intermediate value between v(1) and v(2). If w > 0 or w < 0 
for all x, then straightforward integration on the above equation gives (2.2). Let 
Po (t) < pI(t) < P2(t) <... be the points such that at those points w changes signs. 
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Let aj be the sign of w in (Pj,Pj+i). Multiplying (2.3) by auj and integrating the 
resulting equation over (pj, Pj+i) gives 

(2.4) agj wtdx = e(ajwx(pj+i-O,t)-ajwx(pj +O,t)) 

+ E aj (Wx(xM(t) + O, t)-Wx(Xm-OJ t)) 
p, < Xm <P, + 1 

Pa +1 

+auj / (91 (x, t)- 92 (x, t)) dx. 

Since w(pj,t) = w(pj+l,t) = 0 and ajw > 0 for x E (Pj,Pj+i), we have 

rP3+l P3+1 dt JP+1 wldx = aujj wtdx. 

Moreover, observing that acjwx (pj+I - 0, t) < 0 and ajwx (pj + 0, t) > 0, we obtain 
from (2.4) that 

d P3+1 

w3 1 pj <Xm <pj+ 

RP3+1 

+ y 191 (x, t)-92 (X, t) I dx. 

Since the above inequality is true for all j > 0, we have 

dt lIwldx < >j Wx(Xm+O,t) -wx(Xm-0, t) 

P? 
+ 1 I1 (x, t)- 92 (x, t) I dx, 

where p* = supj pj3 If p* < oo, using a similar method as above gives 

dt Iwldx < K E Iwx(Xm(t)+?0t)-wx(Xm-O,t)I 

+ g191 (x, t) - g2 (X, t) j dx. 

In obtaning the last inequality, we have used the fact that w -+ 0 as x o-+ o. Using 
the above two inequalities, we obtain 

j Iw(x,t)ldx < 6 5 j Wx(Xm+O,T)-wx(Xm-OrT)dT 
P? Xm >Po 

pt poo 0oo 

+? j gi(X,T) -g2(X,T) IdxdTr+ j jw(x, a)dx. 
a Po 

A similar result which replaces po, oo by -oo, po, respectively, in the above inequal- 
ity, can be established. These results lead to (2.2). D 

Assume Xm(t) is a smooth curve satisfying the Rankine-Hugoniot jump condi- 
tion: 

(2.5) XnM(t) = f m+) -( M) 

U _U 
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where X(t) := dX/dt is the shock speed, 
u 

= U(Xm(t)+, 0),U = U(Xm(t)-?) 
with 4+ < Un. If U? are independent of t, it is shown in [20] that there is a traveling 
wave solution of the form V1 (x -St), where the wave speed S is a constant, satisfying 
(0.3) and Ve(-oo) = u-, V1(oo) = u. In the case when 4l are functions of t, we 
need the following generalization. 

Lemma 2.2. Let 4lm(t) < u- (t) be two given functions and Xm(t) be defined by 
(2.5). Let V((; um u-) be defined implicitly by 

v 

(2.6) J _ / [4b(u; u, uk)] -du, 
2(+ +Um 

(2.7) @(u; u+ ) - fu() -f(U) Xm( -U). 

With respect to ( the function V ((; 4+, u-) is a decreasing function satisfying 

(2.8) 

V (-OO; U+ U-) = u-, V (O; U+' U-) = 2(U+ + U-), V (oo; U+, U) = u+ . 

It also satisfies the following inequalities 

(2.9) IV ((; um, u-) -H((; umv X u-) I < (um- -u) expf -a(u- - u+)11/21, 

(2.10) |V(') (-Xm;u+,u-tl)-H (-Xm;u+,u-tl) |< 46, 

where ac is defined by (0.5). In the above inequalities, v ()((; u,u-) 
V(4/e; 4, u ), H is the so-called Heaviside function defined by 

H(.+ _ fun+ if > O, mxu~lum )-~ if X x< 0. 

Denote VW (x - Xm (t); u, u-) by Vm(). Direct calculation shows that 

(2.11) 

(v4e)) + e (va)) -e (v4m)) - (v ))+ 4t + (VW )) - 

where (v9) ? indicate the partial derivatives for V(e) with respect to the param- 

eters 4, respectively. Since Vm7) -* H(x - Xm; 4), u) as e -* 0+ (see (2.10)), it 
is expected that the right-hand side of (2.11) approaches H(x - Xm(t); i4m, itm) as 
e is sufficiently small. 

Lemma 2.3. Let V(W)((4;,u-) be defined by that in Lemma 2.2. We have 

(2.12) (V(e)) + (E; u+, u)i+ + (V(e)) u+, um)it-H(*; u+, it) 

< Ce (ux(XM +?0t)I+Iux(Xm-07t)I) 

where it- = d(u?)/dt. 

We defer the proofs of the above two lemmas to the Appendix. 
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3. MAIN RESULT AND OUTLINE OF PROOF 

In the preceding sections we were concerned with the solution structure, traveling 
wave solution and stability lemma. Using these results, we are now ready to state 
and prove the main result of this paper. 

Theorem 3.1. Let the flux f be strictly convex. Assume that the initial data uo 
satisfies the requirements (A1)-(A4) stated in Section 1 and that a(uo) is sufficiently 
smooth near its negative minimum points. If ve is the solution to (0.3) and (0.4) 
and u is the solution to (0.1) and (0.2), then the following error estimate holds: 

(3.1) sup I vE (, t) -u(, t) | < C(T) (e log e + ), 
O<t<T 

where C(T) is a constant independent of 6. 

Before giving a proof for the above estimate, we point out a direct application 
of Theorem 3.1. 

Corollary 3.1. Let the flux f be strictly convex and uo E Co(R). If a(uo) has 
a finite number of inflection points and is sufficiently smooth at the decreasing 
inflection points, then the following error estimate holds: 

(3.2) sup IvE(, t) -u(, t)|| < ?(T) (el logel + ). 
0<t<T 

Remark 3.1. Loosely speaking, the above result implies that for scalar convex con- 
servation laws, if the initial data uo is smooth and f'(uo) has a finite number of 
inflection points, then the L1-convergence rate of viscosity methods is O(EI log Ei). 
The class of initial data described in Corollary 3.1 is quite general, and is widely 
used in practical computations. C 

We will use Lemma 2.1 to prove Theorem 3.1. An essential requirement in 
Lemma 2.1 is that the solution to (2.1) should be continuous. It is known that 
the solution of (0.3) is continuous for t > 0 if the initial data is piecewise smooth. 
However, the solution of (0.1) may be discontinuous for t > 0 even if the initial 
data is smooth. Therefore, we cannot apply Lemma 2.1 directly to equations (0.1) 
and (0.3). 

As discussed before, there are two kinds of discontinuity, namely rarefaction 
wave and shock wave for solutions of (0.1) and (0.2). Across the rarefaction region, 
the solution is continuous, but on the shock curves, the solution is discontinuous. 
We need to construct a reasonable approximation to u so that it can get rid of the 
shock discontinuities. 

We will consider the cases when u possesses shock discontinuity. For any interval 
(tP,tP+1),0 < p < P (here to = O,tp+l = T), we will construct v-,,p(x,t), an 
approximate function to u(x, t), such that 

* (B1): v-,p,(x,t) E C(R x (tp,-tp+-1)),VEp(x*t)-v 0, as x -* ?oo; 
* (B2): vp (x,t) is piecewise smooth and satisfies 

(3.3) (v V) E 
? (f(v3P))X - e(VEh)r = -(x, t) 

in its smooth regions; where the right-hand side function satisfies 
tp+l-E 

,3,4) , , _,* t. d 

,, 
CE lo El 

. 
,C. 
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* (B3): ux and (V,,p)x are discontinuous on the same curves, namely, they are 
discontinuous on Xm(t), 1 < m < Mp, for (x, t) E (R x (tp, tp+1)) (see Section 
1 for the definition of Xm; here for ease of notation we ignore the superscript 
p and n). Moreover, 

(3.5) E | (vc,p)x (Xm (t) + 0, t) - (VE,p)x (Xm (t) - 0 t)I 
m 

- E lUx(Xm(t) + 0,t) - ux(Xm(t) - 0,t)|; 
m 

* (B4): For t e (tp, tp+l ), 

(3.6) hE lp (, t) - u(*, t)|| ? Cc. 

It is known that v,, the solution to (0.3) and (0.4), belongs to C0(Rx (tp,tP+1)). 
If V,qp satisfies (Bi), (B2) and (B3), using Lemma 2.1 gives 

jvE(*,t) - VEp(*,t)ljl < llv,(*,ttp +E)-veP(,tP + C)IA + jJg(*,-r)/lldT 
tP+C 

t 

+cE J lux (Xm (T) + 0, r) -Ux (Xm (T) -0,T) IdT, 

m t+ 

for t E (tp + E, tp+1 - C). Using Lemmas 1.1, 1.2 and (3.4) gives 

IIvE(.,t) - ViE,p(*lt)II < IVIE(*1tp +? ) - VE, tp +? c)I + Ced logcl + Cc, 

for t E (tp + c, tp+? - E). It follows from the above inequality and (B4) that 

flv'E(,t) - u(*,t)II ? llvE(e,tp + C) - u(e,tp + E)11 + CEl logel + CE, 

for t E (tp + El tP+- e). Since u and v, satisfy the following stability results, 

JIuQ(, S1) - U(., S2)I ? < C0S1 - s2 1, IIV (. Si) - VE(., S2) ? CIS1 - S21, 

we obtain 

IIvE(0,t) - u(0,t)|| < lIv6(.,tp) - u(0,tp)II + CEl loge| + CE, t E [tp,tP+?]. 

Noting that the above inequality is true for all 0 < p < P we obtain that for any 
t e [0,T], 

||VIE(O, t) - u(0, t)| 1< live (,* 0) - U(0 ?)||1 + Ce| log e| + Ce 
- CeIloge I+Ce. 

To prove Theorem 3.1, what remains is to construct V-i,, 0 < p < P, satisfying 
(B1)-(B4). We will concentrate on (tp, tp+1), one of the intervals in Up 0 (tp, tp+?). 

Remark 3.2. Once again we point out that the main difficulty in using Lemma 2.1 
is that the solution u may be discontinuous. This happens when u has shock dis- 
continuities. If the solution u contains contact discontinuities only (i.e. rarefaction 
waves), the solution is still continuous and Lemma 2.1 can be used directly. There- 
fore, the construction of V, is to remove shock discontinuities and no efforts need 
be made to remove the contact discontinuities. Cl 

For ease of notation, we denote V,,p by V, in the remainder of this section. 
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3.1. Zero shock. In this case, no shock occurs in the domain R x (tp, tp+1). We 
simply choose - 

= u. Since there is no shock discontinuity for u, we have V = 

u E C(R x (tp,tp+1)). It is straightforward to verify that this v-, satisfies the 
requirements (Bi), (B3) and (B4). It is also obvious that g(x,t) in (3.3) equals 
-Euxx. Using Lemma 1.3 we can verify that this - satisfies (3.4). Therefore, the 
requirement (B2) is also satisfied. 

3.2. One shock. In this case, we assume that u is smooth in R x (tp, tp+?), except 
on x = Xm(t). Here the function Xm(t) satisfies (2.5). As mentioned before, 
Lemma 2.1 cannot be applied directly since u 0 C(R x (tP,tP+1)). In order to 
overcome the difficulty, we introduce the following approximate solution: 

(3.7) 

V,(x, t) = u(x, t) + [V(e) (x - Xm; u+,u) - H (x - Xm;u u,u u) 

We will verify that this v-, satisfies the requirements (B1)-(B4). First, we observe 
that 

IE(Xm + 0,t) - E(Xm-01 t) = V(c)(0?+;u,UM) - V(') (0-; UM, um) = 0, 

which indicates that v-, E C(R x (tp, tp+1)). It is also easy to see that VE-, - U + 0 

as x - ?0oo, which implies that v - -0 0 as x -* ?oo. Hence, (Bi) is true. We 
can also show that (B3) is true. Using Lemma 2.2 will give (B4). We now need to 
show that v-, satisfies (B2). 

Proof of (B2). We denote V(e) (x - Xm; u , u-) by Vm(), and H (x - Xm; u+,u) 
by Hm. It follows from (2.11) that 

(v4 )) ? f (v4 ) -e (v4) - (v m)) + m?(v m)) JL- 

This, together with (0.1), gives 

(VIE)t + (f(ii6))X -(E)xx = g(x,t), t E (tp,tp+,) 
where 

g(x, t) = Il + I2 -Uxx, I, =-(f (u))x -f ( + f(V6)x, 

I2 ( iV+)) +i4m? (V ))i H(x-Xm(t); it U). 

Notice that [H (x - Xm(t); u+, u )1x = 0 for all x except on the curve x = Xm(t). 
Away from x = Xm(t), we have 

I,= f'(V) (ux + (v4e)) -f'(u)ux-f (v?)) (v) )) 

= (f '(e) - f'(U))ux ? (f (Ve) - f (V4)) (V4)) 

= f"/ ((l) (ic) -Hm) Ux ?f// (62) (U-Hm) (va)) 

4 (1) +I(2) 

where 4j and 62 are some intermediate values. For x > Xm(t), although there 
are no shock curves across the interval (Xm,x), there may exist a finite number 
of central rarefaction waves in the interval. Let x = Y1 (t), 1 < I < L, denote left 
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or right boundaries of the rarefaction waves for t E (tp, tp+0). If x > Xm (t) but 
x 7$ Yi(t), 

u:(x, t) = Ux(Xm(t)+0, t)?+ (ux(Y(t)?+0,t)-ux(Yi(t)-0, t)) +? uXX(x,t)dx. 

It follows from the above result that, for x > Xm(t), 

(3.8) 

lux (XI t) I< ?ux (Xm(t) + O,t) I +E lux (Yi(t) ? O,t)|+ ?luxx (,Dt) II 
I 

Similarly, we can show that, for x < Xm (t), 

(3.9) 

lux(xI,t)| I< lux(XM(t) -Olt) I + E lux(Yl(t) ?01 O,)|+llux27(,Dt) II 

The above results and (2.10) lead to 

I1) (,0 t) II < CE (lUxm(t) ? 0, t) I +? x u(Yi (t) ?, t) ? + lluz (, t) ). 

An application of Lemmas 1.1, 1.2 and 1.3 yields 

+j 
- 

II('1)(, t) Hldt < CEI log El + CE. 
tp+E 

Using the facts that [H (x - Xm(t); u , um)]x = 0, a.e. and (V(E))x < 0, we have 

(3.10) II(2) (,t)Hl < cJ Iu-Hml (Hm-Vm4E) dx. 
-oo 

For any x 7$ Xm(t), we can show that 

|u(x, t) - Hm ? < max lux (z ? 0, t) |x - Xm(t) . 

For x :$ Xm(t), using (3.8) and (3.9) yields 

lu(x, t)-Hml < (lux(Xm(t)?+0,t)| + Elux(Yl(t) A0,t)| + lluXX(,t)I 11 1-XM(t)1. 

Hence, from (3.10) we have 

| 1 )| < C (|UX(XM (t) ? O,t)I ? + E U(Yl(t) ? O,t)I ? +||u(e t)|) 

x J X -Xm(t)I (Hm-Vm4E) dx. 

Using integration by parts and Lemma 2.2, we can show that the integral on the 
right-hand side can be bounded by CE. Further, using Lemmas 1.1, 1.2 and 1.3 
gives 

Itp+1 -E c 2 
I I(t) ldt < CEj log El + CE. 

tp+E 
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We have therefore obtained an estimate for I,. An application of Lemmas 1.1 and 
2.3 yields 

rtp+l-1E 

]H I(I2 (*t)IIdt < Cel logel +?C. 
tp+,E 

Using the estimates for I, and I2, together with Lemma 1.3, we establish the 
inequality (3.4). D 

Remark 3.3. From the definition of g(x, t), we find that it is necessary to estimate 
ux.. Therefore, Lemma 1.3 is useful in obtaining our error estimates. D 

3.3. Two shocks. In this case, we have two smooth shock curves, Xm(t) and 
Xm+i(t), satisfying one of the following possibilities: 

* (P1): Xm+i(t) > Xm(t) for t E [tp,tp+1b] see Case H in Figure 1; 
* (P2): Xm+i(t) > Xm(t) for t E [tp,tp+1) and Xm(tp+i) = Xm+i(tp+i), see 

Case D in Figure 1; 
* (P3): there exists a time level t(Pl) E (tp, tp+l) such that there are two shock 

waves for t E (t,t(P ')), but the two shocks meet at t = t(A1) and form one 
shock for t E [t(P1), tp+1), see Cases C and D in Figure 1. 

For the first two possibilities, we introduce the following approximate solution: 

(3.11) ve(x, t) = u(x, t) + [v(cE) (x - Xm(t); u+, u-) - H (x - Xm(t);u+ , uk) 

+ [v(E) (x - Xm+i(t); Um+ I u+1) - H (x - Xm+l(t); u++1 I ut4)]. 

We can verify that v- satisfies the requirements (B1), (B3) and (B4). Again, we 
will show that v-i satisfies (B2). 

Proof of (B2). We denote V(e) (x - Xm(t); u+, u- ) and H (x - Xm(t); u+, v z) by 
Vm?$) and Hm, respectively. It follows from (2.11) that 

(vie) + f (v4E)) -6 (v4 )) ? (v4 ) ?f (v4+) -6 
(v4E) 

V(,E) t+ + VE) 
a- 

(V(E) m 
t 1 

() t M +m 
( UM m m m+)+ Um m + (V+l U , 

This, together with (0.1), gives 

(VIE)t + f(VIE)x -X6(VE)xx = g(x, t), t E (tp tp+l) I 

where 

(3.12) g(x, t) = Il + I2 - Uxx, 

I1 =-f (u)X- (_fVE) f- (Vri) + f (VIE)x 

2 = V ?) (va) ) _E U- H(xH - Xm (t); it+ it-) 

+ -(E) X +i(+t + V(,+E)- 

-H (x-Xm?l (t);itU+JI?Ul1 - 
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We only need to estimate [III,; other terms on the right-hand side of (3.12) can be 
handled by Lemmas 2.3, 1.1, 1.2 and 1.3. Observe that 

= f'(~v) (ux ? (vme)) + (V4+4) )-f'(u)ux 

-f' (v4e)) (v4e)) - f' (v4e)) (v4e)) 
f f"(41)(Ve -U) Ux+f (42) (ne -v4 )) (v U)) 

?f "() ( E -V(1) (V_ f ) x =:~~~~~~~~~~~~~~~~~~~~ I1 U ( ) UX I(3) (~)4E 

where 4 1, 42 4 are some intermediate values. Similar to the proof of (3.8) and (3.9), 
we have 

?Zlux(Yi(t) ?0,t)f ? uxx(.,t)H, 

for any (x,t) E R x (tp,tp+1), where x = Y1(t), 1 ? I K L, denotes left or right 
boundaries of (possible) rarefaction waves. This, together with Lemma 2.2 (more 
precisely (2.10)), leads to 

J t+ (, -) 1 l 

tp+c 

Observe that 

(3.14) I(2)| K C|U- Hm| ( vmc)) ? CIV4M- Hm+i2 (-v E)) 
J1 J2 

From (2.9) we have 

31 J2(3 , t) || = of <V> Iu+Hm+i| (-vm)) dx 

? C/3m+i Jc~ exp (-3m+i IX Xrn+i(t)l) (-V(e))dx 

|x-+j m+i (t)I|6(t)/2 ?x- Xm+l (t) | +6(t)/2 

<C/3m+i [f (-vte)) dx+?exp (-/3m+i 4 
) Jo (v4mE)) dx 

< Cm+l[J (Xmi?/ x + ___)- U7U)+p xp(d+ g 

where aymxtE x /t3 m+I = 1) -, whr) = Y6 Xm( = X - Xm(t). It follows 
from (2.9) that 
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Consequently, we obtain 

(3.15) 

ijJ2(, t)jj ? C3m+lirn fexp (-m( 4t) + exp ( 4-3m+1 8e() 

Consider the following function: 

Z(t) X m+1 t-X t) t E [tpltp+l]- tp+1 ()- x t) 

It is obvious that z(t) E C[tp,tp+?). For the first possibility, (P1), Xm+i(t) - 

Xm(t) > 0 for all t E [tp, tp+1], which indicates that z E C[tp, tp+ 1. For the second 
possibility, (P2), we have u+ (tp+1) u +1 (tp+1). It follows from the definition 
(2.5) that 

(3.16) 

Xm(tp+l - -Xm+i(tp+i) = ju (u (?+1(tp+, )), 

where ( is an intermediate value. Since Xm+i (tp+) -Xm (tp+i), we have 

0 < (C+l(tp+j) - (f;(tp+l) = tp?l (a(u (tp+1)) -a(u+ 
< C(llm(tp+l)-Um+l( +t p+l+)) 

This and (3.16) lead to 

Xm(tp+) - Xm+?(tp+i) > C > 0. 

From this and L'Hospital's rule, we have 

lim z(t) = - < C. 
t~tp+l -0 Xm (tp+l )-Xm+i (tp+l ) 

This indicates that z E C[tp tP+1]. Therefore, for both possibilities (P1) and (P2), 
there exists a constant -y > 0, such that Iz(t) < ?y for all t E [tp, tP+ 1. It follows 
from the definition of z(t) that 

6(t) = XM+1(t)- XM(t) > C(tP+ - t), tp < t < tp+l. 

FRom this and (3.15), we have 

IJJ2(0, t) I ? CJ3m+i/3m{ exp (-C3m+ (tp+? - t)/e) + exp (-CI3m(tp+ -t)/E) }. 

This yields 
J tp+1 

1lJ2(*,t)lldt < Cc. 
p 

The estimate for J1 is a little simpler than that for J2. It follows from the facts 

u(x, t)- Hm < maxz<X+l(t) IUx(Z?O,t)j|z-Xm(t)I, if X?Xm+?(t), 
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that 

HJ1i(O,t) = C , u - Hm (-Vm) ) dx 

? Crnax 1uX(z?O,t) j 1X-Xm(t)X ( E()) dx 
z<xm+l (t) x 

+C (-VmE)) dx 

Cmax ux(z? O,t)IJ Ix Xm(t)I (Hm -V( m)))dx 

+C(V (6(t)/E; u, u-) -um 

Using integration by parts and Lemma 2.2, we can show that the last integral can 

be bounded by Ce. Similar to the proof for J2, we have 

O V(6(t)/l; u+, u-) - um < pm exp (-COm(tp+j - t)/,E) 

These results, together with (3.13), yield 

rtp+c-E 

]H 11 Ji (. t) ||dt < CeI log el + CE. 
tp+e 

Therefore, for both possibilities (P1) and (P2), we have 

Jtp+1-E c 2 
X I(),t) Hldt < Cl logej + CE. 

tp+e 

In a similar manner we can show that the above estimate holds also for I(3). Hence, 

we have proved that in cases (P1) and (P2) the function vE given by (3.11) satisfied 

the requirement (B2). 

If the possibility (P3) is the case, namely there are two shock curves, Xm(t) 

and Xm+i(t), for t E (tP,t(P'1)), and one shock, Xm(t), for t E (t(P'1),tp+1), we 

construct VE in the following way: 

(3.17) 

-|f u(x, t) + (VmE) - Hm ) ?(E) - +i if t E (tp, 
t (p, 

-E u(x,t) + (VmE) - Hm), if t E [t(P1),tp+ ). 

This case can be regarded as a combination of possibility (P2) analyzed above and 

the one shock case analyzed in the last subsection. It is then not difficult to verify 
that this V. satisfies the requirements (B1)-(B4). D 

3.4. More shocks. Assume that we have M shock curves Xm(t), 1 < m < M for 

t E (tp1,t(P' )), where t(&1) < tp+_. These shocks may emerge and there will be a 

lesser number of shocks for t E (t(P1), tp+i). Similar to the last two subsections, we 

let 

(3.18) 
M 

Ve (x, t) = u(x, t) + V (v) (x - Xm(t); u+,u) - H(x - Xm(t); u, up))v 
m=l 

for (x, t) E R x (tp, t(P1)'). We found that it is straightforward to extend the method 

of proof in the last subsection to show that the function v- given by (3.18) satisfies 
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the requirements (B1)-(B4). It is found that the following estimates are particularly 
useful: 

M 
(3.19) 1 UE(*I t)- u(o t)H< ? S VE) - Hm ? Ce; 

m=1 
M 

(3.20) |u,,(x?0,t) I< E SUx(xm(t) ?0,t) +E?lux(Yi(t) ?0,t) ? +Iuxx(O,t) I; 
m=1 

(3.21) ||E(ve , t) -k )E ) Vk ) )| 

< (U(,u,t) - Hk) (vkA )) ? 5 (va) -Hm) (V M)) 

m#Ak 

< max uX(z + 0, t)ICE + C3k exp (-C!k(tp+1 -t)/) 
Xk-l<Z<Xk+l 

+ E 3mk{ exp(-C/3m(tp+1 -t)/c) +exp(-C/3k(tp+l -t)/) }, 

m#hk 

for 1< k < M where pm = U-U ,-u k u= U -Uk+. Herewe haveset Xo(t) = 

-oo, XM+1 (t) = 00. 

For t E [t(p1), tp+i), the number of shock curves is less than M and we may use 
mathematical induction (based on the number of shock curves) to show that an 
appropriate v- can be found (cf. [20]). Therefore, Theorem 3.1 is proved. D 

Remacrk 3.4. Under the present framework, the factor O(I log el) cannot be removed 
from our results. We found the factor is due to the estimates for ux and uxx, see 
Lemmas 1.1 to 1.3. In some special cases, these estimates can be improved so that 
optimal convergence rates can be obtained. D 

4. REMARKS ON SHARP ESTIMATE 

In this section, we consider the case when the initial function uo satisfies the 
following conditions: 

* (Cl): uo(x) is bounded and piecewise C2-smooth with a finite number of 
discontinuous points -yi, 1 < i < I; ito (Qyi ? 0) exist and are finite; uo (-yi -0) > 
UoQ(Yi + 0); 

* (C2): iio E Ll (R); 
* (C3): 

lim e(uo (x)) = 0; 
lxlj-4o 

* (C4): a(uo) has no decreasing inflection points, but may have a finite number 
of increasing inflection points. 

The assumption (C4) implies that there is no original shock generated after t = 0. 
The assumption (Cl) implies that there is no central rarefaction waves formed at 
t = 0. Therefore, only discontinuities are initial shocks and the interactions of the 
initial shocks. Assume x = X(t) is a shock curve. Following Lemma 1.1, we can 
show that 

T 
(4.1) lux(X(t) ? 0,t) dt < c 

(4.2) 1 ?&(uO(?))t dt ? C. 
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We now use notations introduced in Section 1. The interval [0, T] can be divided 
into several subintervals: 0 = t(0) < t(1) < ... < t (N) - T. In each interval 
[t(n) t("1)), there are a finite number of smooth curves x = Xn(t) satisfying 

X (n) (t) < X (n) lt, m = 1, ,Mn1 

From each point on x = (n)(t), we can trace two characteristic lines back to t = 0: 
X(n)(t) - ( + a(uo((4))t. Using (1.29) and the assumption (C4) gives 

I 1 1 1 
1 + &(uo(())t ? 1 ? (uo(U0())t ?1 + &(uOK((+1))t 

for < < (? +j with m = 0, X.. , Mn, where we have set (0+ =- ? ( 
Qn+1 

= ?? 

It follows from (4.2) that the integral for the right-hand side functions over [0, T] 
can be bounded by a constant C. Following the proof for Lemma 1.3 we can show 
that 

T 

(4.3) )IUx (.t) t)Hldt < C. 

Using (4.1)-(4.3) and repeating the procedures in the last section yield the following 
theorem. 

Theorem 4.1. Let the flux f be strictly convex. Assume that the initial data uo 
satisfies the requirements (C1)-(C4) stated above. If v, is the solution to (0.3) arnd 
(0.4) and u is the solution to (0.1) and (0.2), then the following error estimate 
holds: 

(4.4) sup IvE (, t) -u(, t) 11 < C(T)c, 
O<t<T 

where C(T) is a constant independent of e. 

It is easy to show that 0(c) convergence rate is the best possible one for viscosity 
methods. The above result indicates that if the solution to (0.1) and (0.2) includes 
neither central rarefaction waves nor spontaneous shocks, then viscosity methods 
yield the optimal convergence rate. 

5. RESULTS ON NONINCREASING INITIAL DATA 

Throughout this section, c denotes a positive constant independent of t and c, 
but with different values at different places. We consider a special case when the 
initial function satisfies the following conditions: 

* (DI): uo(x) is bounded, nonincreasing and piecewise c2 smooth with a fi- 
nite number of discontinuous points -Yi < ... < yI; iUo (-yi ? 0) exist and are 
bounded; 

* (D2): iio(x) does not change sign when lxl > A, with A a positive constant; 
* (D3): 

lim i(uo (x)) = 0; 

* (D4): a(uo) has no inflection points. 
Since ii(uo) does not change sign in each of its smooth domains, we obtain from 

(DI) and (D3) that i(uo) E L1(R). The assumption (DI) also indicates that 
ito(x ? 0) is bounded for lxi < A. Observe that 

ii(uo) a" (uo) (ito)2 + a/(uo) iio 
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where a'(uo) = f (uo) > a > 0. The above results yield that iuo E L1(-A, A). 
This, together with (D2) and (D3), imply that iio E L1 (R). 

The assumption (DI) also indicates that uo(-yi - 0) > uo(Qyi + 0). Since uo 
is nonincreasing, it is known that there exists a time level T* such that there is 
only one shock after t = T*. The solution is smooth away from this shock for 
t > T*. From each point on the shock curve, we can trace two characteristic lines 
X(t) - + ? a(uo((-)) back to t = 0. It is obvious that 

(5.1) (-(t) < -1, (+(t) > -yI, T* < t < o. 

It follows from (DI) that 

uo((-) > uo(Yl - 0), uo((+) < uo (-Yl + ?), T* < t < oo, 
which leads to 

(5.2) uo((-) -uo()u > uo(-yi -0) -uo(-yi + 0) = constant > 0, 

for T* < t < oo. From (1.2), (1.4) and (5.2), we have 

(5.3) > > c> 0, (53)~~ 
~~~ I+ 4-au0((-))t 

where we have used the fact &(uo) < 0 (due to (DI)). Since < 0, we obtain that 

(5.4) lim (-(t) =-o. 
t-o00 

Moreover, from (DI), (D3) and (D4), we have 

(5.5) 
d (uo())< 0, E (- oo<yi), and d (uo(>)) 0, E (-yI, O). 

We need to prove the following results for some finite values T1, T2 > T*: 

(5.6) lux(X(t) - O,t)ldt < c, j lux(X(t) + O,t) dt < c; 

[ [5 i/o J i(u))It 0 lito'(t(uo) tddtI<c 
(5.I) I (/ I +1 &(o)t)2ddt < c, I2+(t) (1 + &(u0)t)2ddt < C 

(5.8) [0 

(()-d(dt < c, 
F0 

d(dt 
< c 

IT ] 1 + &(uo)t iT J~(t) 1I+ &(uo)t 

It follows from (5.4) that there exists a time level t = T1 > T* such that (- (t) < 
-A for t > Ti. From (1.14) and (5.3), we obtain 

r00 r00 
(5.9) j lux(X(t)-O,t)ldt < cj l-(t)ito((-)ldt 

< C(u0(-00)-u0(( (T1))) < C, 

where in the second inequality we have used the facts that Q- < 0 and ito(() < 0. 
Hence the first inequality in (5.6) is proved. Further, using (5.5) gives 

0/ (I (ot Z I+&u(()t -I &1 (uo((-))t1 

It follows from (D2) and (D3) that 

ito(() ?< Jto((-)l for E (-oo,0) 
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The above two inequalities lead to 

f-(t) 
jit&i(uo)t d( < 1u0(-)1 -IUX(X(t) -Olt)I 

X0 (1 + &(uo)t)2 - 1 + &(uo(( ))t 

This and (5.9) yield the first inequality in (5.7). Using (D2) and (D3) gives 

j0(t ioIdol< = -ito() for t > Ti. 
-00 

This and (5.5) yield 

f+() t d K 1 a()( < - ) IU(X(t)-o,Ot) I . 
0~0 1 + a(uo)t - 1 + a(uo(Q-))t 

Consequently, the first inequality in (5.8) is proved. The second inequalities in 
(5.6)-(5.8) can be proved in a similar way. 

Let T = max{Ti, T2}. Using (5.6)-(5.8) and following the proofs for Lemmas 
1.1 and 1.3, we can show that 

r00 r00 

(5.10) j Iu(X(t) ?0,t) dt < c, j uxx(,t) ldt < c. 

Repeating the proof in Section 3.1, we can obtain 

(5.11) 
live(W)t)-u(, t)ll < llve(W,)T)-u(, T)II + cE, t E [T, oo), 

where c is independent of t and e. Since the conditions (C1)-(C4) include (Dl)- 
(D4), Theorem 4.1 implies that 

(5.12) live(et) - u(, t) ?1 < C(T)E, t E [0, T]. 

Combining (5.11) and (5.12) gives the following theorem. 

Theorem 5.1. Let the flux f be strictly convex. Assume that the initial data uo 
satisfies the requirements (D1)-(D4) stated above. If ve is the solution to (0.3) and 
(0.4) and u is the solution to (0.1) and (0.2), then the following error estimate 
holds: 

(5.13) sup |v(e,t) - u(,t)| < CE, 
O<t<00 

where c is a constant independent of e. 

6. GENERALIZATIONS 

In this section, we will briefly mention two possible generalizations. The first 
one is a straightforward extension. The ideas in this paper can be applied to a more 
general viscosity equation of the form 

(6.1) (Ve)t + f (vE)x = 6(B(Ve)VE)xx, 

where B(u) > 0 for all u E R and B E C1(R). We only need to change @ defined 
by (2.7) to 

(6.2) (u; uaIu) = [f (u) -f (u) - Xm(u - u-)]/B(u). 
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With this definition of b, it can be shown that the corresponding L 
V(')(x - Xm(t); u+, u- ) satisfies 

(6.3) 

(4)) + f (Ve)) -6 (B (Ve)) VQ(e) - (Ve)) + + (Ve)) iM. 

Furthermore, the stability lemma, i.e. Lemma 2.1, can be modified to give an 
inequality similar to (2.2). It is then straightforward to extend our results and 
proofs in Sections 3 to 5 to the solution of (6.1). 

The second extension is concerned with finite difference approximations for the 
hyperbolic conservation laws (0.1). We only point out some possible results, and 
their proofs could be very complicated. As mentioned in the first section that vis- 
cosity methods and monotone difference schemes share some common properties 
when they are applied to approximate solutions to hyperbolic conservation laws, 
it is expected that Theorem 3.1 can be extended to some monotone difference 
schemes. More precisely, assuming that uAx(x,t) are solutions of monotone dif- 
ference schemes consistent with the equation (0.1) and the initial condition (0.2), 
and assuming that u0 satisfies the conditions stated in Theorem 3.1, we expect the 
following estimate: 

sup jjuAx(.,t) -2u(u) t) ?| < C(T) (Axl log Axl + \x), 
O<t<T 

where Ax is the discrete meshsize in space and C(T) is a constant independent of 
Ax. Similar extensions for Theorems 4.1 and 5.1 are also expected to be true. For 
decreasing piecewise constant initial data, a rigorous analysis, based on Jennings' 
traveling wave results [8], shows that a uniform error bound similar to that in 
Theorem 5.1 holds for strictly monotone difference schemes [20]. However, for 
piecewise smooth solutions, this extension could be quite difficult. 

APPENDIX A. 

Proof of Lemma 2.2. The entropy solution u of (0.1) and (0.2) satisfies Ilull < 

lUo01 L?(R) We let 

(A 1) = max f"(u). 
|U|<?|Uo1L??(R) 

From (0.5) and (A.1) we have ae < f" < . We observe that 

(A.2) @(DU; u+ 'uM) 
- [j1 +f'(Ou +(1- O)u-)dO- f- (j u+ (1- O)u-)dO] (u - u-) 

- j fi (u*)0d0( - +)(u -UM) 

where u* is some intermediate value. Since f" > ae > 0, it can be obtained from 
(2.6), (2.7) and (A.2) that V(-oo;u4, U) = ua, V(00;UIU) = U4. It is easy 
to see that V = 4<(V; 4+ , u-) < 0, which indicates that V is a decreasing function 
with respect to (. From (A.2), we have 

(A.3) 

22 Um)(u U) < P(V; Um+ Um) < 
? a(u u 



524 TAO TANG AND ZHEN-HUAN TENG 

This together with (2.6) and (2.7) imply that for < < 0 (in this case V > 2 (al +u-)) 

-_ + In [m < ((Vi U U) < In 
___ 

?t m -U+ v- u+ mlm um - u+ V-u1M- 

Therefore we have 

V(a(/2;a ,u u) < V < V(l(/2; ua), ua), < ?0 

where 

V(; uma IUM) = ++ eXp{(aUm- )} I+ exp{ ((a -u~) 

It follows from the above results that, for ( < 0, 

(A.4) IV((; u' Ua) - ua < (um - Ua) exp{ ((u- - ua)/2}. 

Similarly, we can show that 

V(f(/2;a u ua) < V < V(a(/2; ua ua), > ?0 

which gives that, for > > 0, 

(A.5) IV((; ua Ua) - Ua < (u - ua) exp{-a((ua -au)/2}. 

It follows from (A.4) and (A.5) that 

(A.6) V( ;a ,a )-H(o; ua u) K< 

Notice that H(x - Xm; 4, u-) = H((x - Xm)/E; 4, un). Using integration by 
substitution and (A.6) gives the inequality (2.10). D 

Proof of Lemma 2.3. Differentiating (2.6) with respect to the parameter 4l gives 

0= V Ia'?a)a u 
v 

u (+u ) (u(;4,u+)~ c 
0 +u (>2m U-))U2 

du. 
(VUm Um ) >(2 Im +Um );tm Um )J2 (m +m )[ (;Um X m)]2 

We obtain from the above equation that 

1 4(V;u+,aU) 
(A.7) VL+ 1=--M-- 

jV (4 (u; U+U-))+ + (41(u; t+' u-) ) 

m I U;~ ~ ~ ~ [(a;+ a)]2 ca 

Direct calculation using (2.7) and (2.5) gives 

@ + 'I1u 
um 

= -(Xm)U+(u 
- 

Ua) + f'(u) 
- Xm 

fl(uM)(M - UM) - (f(uM) - f(a)) (f )-U-() + f() +) 

(aU -U)2 m -am 

fl (uM) (uM 
- 

UM) 
- (f (4) -f (am )) (U - aM+) + f' (U) - f(aUM) 

(a+ - a-)2 m m 

f (U;1 t- U+) + f "((2)(tU -U)) 
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where u+ < c1, (2 < u- Therefore, we have obtained that I (U+ + 3u < u-4 1, 
where 3 is given in (A.1). For ( > 0, we have u+ < V < 1 (u+ + un). From (A.7) 
and (A.3), we have 

IVu + - 

< C m_ + CIV-U j(Udu4)j + (u- 

<~~~~ CM+I 1 n (m m) uM) ) 
Urn UrnM (u~+ ) iU - Urn m - LLmn2 

where C is some constant depending only on ae and ,3. Since x(1 + ln(A/x)) is an 
increasing function for 0 < x < A, we obtain from (2.9) that 

P00 

J Vu+ ((; u+, u) 1I d( 

< c J e-(7t- 7sm)(/2 [+ln (U _(Um-+)(/2)d _ + 
(!e(uu 2 ~ /2~l Urn - Unm 

In a similar way we obtain that 

I (P>(V; U+ 7U+_ )v U-) Um (4 ((>U; u+I U)umd 
Urn ?~~~~~~~ 4(V; u+ u du, 

m 2 ( 2 (llm +lm) umv um m (Um++u) [41)(u; UM um) 

which also gives 
00 

~~~~-C |Vu- ((; u+ u)l dm) < Sum 

Combining the above two inequalities yields 

j | (v()) + (x;U+ ,U -)i + V(E)) (x; U U-)it - H (x; +, it-) dx 

Urn -Urn 

where we have used the change of variable ( = x/e. It can be verified that 

lit' (m -a(u)) ux(Xm ? 0O t) ?< Cju, - - jlux(Xm ? 0 t) . 

The above results lead to 

j/; | (v(E) + (x;U+ I U4)?+ + (V(E)) (X; U+ U)i - H (x; ii+, t-) dx 

<CE(|Ux(Xmr+0?t) ? Ux(XmrO,t)I) 

A similar estimate holds for the integral with the same integrand over (-o0, 0). 
This completes the proof of the lemma. 
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